Installation and basic setup of

G i g a pxy (version 1.0-2.x and higher)

Install the package, get a license

Download the package suitable for your system from the website, then untar it and execute the
installation script as root. For instance, on a Debian-derived Linux distro:

~/tmp$ tar -xzvf gigapxy_1.0.2-12-master.x86_64.deb.tar.gz
gigapxy.deb
install-deb.sh

~/tmp$ sudo ./install-deb.sh gigapxy.deb
Preparing to unpack gigapxy.deb ...
Unpacking gigapxy (1.0-2.12) ...

Setting up gigapxy (1.0-2.12) ...

~/tmp$

Your copy is not licensed yet, so if you run gng, you’ll see the following message:

~/tmp$ gng -V

gng (Gigapxy relay engine) 1.0-2.12 (master) regular [Debian 8 Linux
(amd64) - 3.16.0-4-amd64/x86 _64] (undefined) 74501f5c/0@; built on
2018-12-13

= ERROR: License not found, please contact support@gigapxy.com

License validation failed, application will quit.

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII




Alicense isissued based on a key, generated by Gigapxy. The key ties it up to the server the
application would run on. Get the key as:

NB: sudo gng -K under FreeBSD

Copy the full output (including the value in round brackets) into an email to request a demo license
from support@gigapxy.com. Your license will arrive in a tarball containing gigapxy.1lic - the license
file. Copy gigapxy.lic to /etc directory and run gng module to check that the license works.

NB: sudo -u gigaplus gxng -V under freeBSD

You’re now licensed till January 31st, 2019 (2019-12-31) - but please make sure to renew in
advance.

NB: If license check fails (err =-5): make sure UDP port 123 (NTP) is open for requests in both
directions.

Update the default configuration (gigapxy.conf)

Default configuration file is automatically stored as /etc/gigapxy.conf (/usr/local/etc
under FreeBSD) during installation. You might need to update it for the application to run. Use any
text editor you like.

Before we proceed to editing, | suggest reading (at least) the Gigapxy core manual:

Let’s edit the config (I suggest you save the original first):

There’ll be a few sections to address, related to different modules.

If wonder about the meaning of a parameter with no adjacent comment, read a respective man page
or study a commented config file:

|


mailto:support@gigapxy.com

NB: Use /usr/local/share/doc/... on FreeBSD.

CONFIG: Request listeners (ws.listener)

Make sure you agree with the default access ports and the network interfaces the requests would be
available from. Mind that admin requests might be sensitive to allow on all interfaces. Use your
judgement.

In the above example we allow admin requests only on the local interface (same box) and let user
requests come from eth0, ports not changed.

CONFIG: Multicast interface (ws.multicast_ifc)

This is set to “all” by default, but should be a distinct network interface instead; otherwise the OS will
pick one for you and will assume that all multicast data should originate there.

Before moving on to the ng. *(gxng) section of the config, please read the documentation.

CONFIG: Buffer subsystem (ng.bufd.*)

Buffer subsystem is responsible for caching HTTP-stream data. Each gng can allocate up to
max_unit_count buffers, each of max_unit_size bytes, forming a common pool. bufd has a lot of
parameters to tweak, so a special guide has been created to explain and illustrate them. Please study
the guide and read the comments in the default config.

CONFIG: Finalizing

Save gigapxy.conf and copyitoverto /etc or/usr/local/etc (on FreeBSD).

|


http://gigaplus.xyz/download/gigapxy/bufd-illustrated.pdf

Launch with a single gng

Before any channels are streamed, we need to make sure the config is valid and the application would
start. The installation provides gigapxy.sh script to automate stop/start/status operations on the
application’s modules. The location is /usr/share/gigapxy/scripts/gigapxy.sh unde Linux (/usr/local/
under FreeBSD). Let’s use the script to verify the configuration.

The configuration works, but you should by no means consider it final. However, we can use the
running single-gng setup to verify that streaming also works.

Test a stream

Any HTTP client can now request a stream from your running gws. Pick a multicast channel and issue
a udpxy-style request (for this example, the gws listens on 192.168.2.20:4046 and the address of the
multicast channel is 224.0.2.26:5050):

If you see wget (1) receiving the stream, your basic setup is complete. Re-read the docs and start
working on your real-world configuration (bufd section is particularly important).

If something went wrong, proceed to Troubleshooting.

|



Troubleshooting

Things can go wrong at any of the steps we’ve covered so far. Just like this:

Check the logs

The first place to check is the log for the failed component. If log does not present a clue or is empty, it
would make sense to run the modules (gws, gng) manually, in DEBUG mode.

Enable core dumps

Let’s first enable core dumps for all components. In gigapxy.conf we make sure that core dumps
can be generated for suid-executables and enable core dumps in the console. NB: Please, don’t forget
to uncomment both for gws and gng.

Run components manually

Let’s launch gws manually (from /opt/gigapxy, under user gigapxy):

If something goes wrong, the module will exit (or crash/core-dump), if not, it will most likely wait for
events to process, indicating it in the log.

If needed, it’s as easy to start a gng the same way (in a different terminal window):

|



If either of the modules core-dumps, this script (run as a super-user) may help to generate cores with
meaningful names:

In case of a crash, gather relevant logs and cores and tar.gz them along with gigapxy.conf. If cores
are present, include /usr/bin/gigapxy executable in the tarball.

Cannot connect to gws(1)

If you simply cannot connect to the primary port (usually 4046), corresponding to gws (1), then the
first thing to check is whether gws (1) receives your requests. See if gws . 1og holds the clue to that. If
no requests come through, it might be the firewall (allow 4046/tcp).

Probe the stream

Another thing to consider, when things don’t work out with a channel is: how is the stream doing? See
if it runs at all, probe it with ffprobe to see if its format is ok. Don’t probe from your desktop, do it
from the server where the issue is, please.

Seek technical support

If all of the above fails, write to support (support@gigapxy.com). There is also a Google+ community
where all sorts of information could be found. A Telegram-based support channel is there for
interactive help.

Enjoy Gigapxy!



mailto:support@gigapxy.com
https://t.me/joinchat/GadA3QuLCNl8nHTVlafhmQ

